Package: COAP 1.2

Wei Liu

COAP: High-Dimensional Covariate-Augmented Overdispersed Poisson Factor Model

A covariate-augmented overdispersed Poisson factor model is proposed to jointly perform a high-dimensional Poisson factor analysis and estimate a large coefficient matrix for overdispersed count data. More details can be referred to Liu et al. (2024) <doi:10.1093/biomtc/ujae031>.

Authors:Wei Liu [aut, cre], Qingzhi Zhong [aut]

COAP_1.2.tar.gz
COAP_1.2.zip(r-4.5)COAP_1.2.zip(r-4.4)COAP_1.2.zip(r-4.3)
COAP_1.2.tgz(r-4.5-x86_64)COAP_1.2.tgz(r-4.5-arm64)COAP_1.2.tgz(r-4.4-x86_64)COAP_1.2.tgz(r-4.4-arm64)COAP_1.2.tgz(r-4.3-x86_64)COAP_1.2.tgz(r-4.3-arm64)
COAP_1.2.tar.gz(r-4.5-noble)COAP_1.2.tar.gz(r-4.4-noble)
COAP_1.2.tgz(r-4.4-emscripten)COAP_1.2.tgz(r-4.3-emscripten)
COAP.pdf |COAP.html
COAP/json (API)

# Install 'COAP' in R:
install.packages('COAP', repos = c('https://feiyoung.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/feiyoung/coap/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

On CRAN:

Conda-Forge:

openblascppopenmp

4.18 score 1 packages 670 downloads 3 exports 6 dependencies

Last updated 10 months agofrom:4af80176b8. Checks:1 OK, 10 WARNING. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 27 2025
R-4.5-win-x86_64WARNINGFeb 27 2025
R-4.5-mac-x86_64WARNINGFeb 27 2025
R-4.5-mac-aarch64WARNINGFeb 27 2025
R-4.5-linux-x86_64WARNINGFeb 27 2025
R-4.4-win-x86_64WARNINGFeb 27 2025
R-4.4-mac-x86_64WARNINGFeb 27 2025
R-4.4-mac-aarch64WARNINGFeb 27 2025
R-4.3-win-x86_64WARNINGFeb 27 2025
R-4.3-mac-x86_64WARNINGFeb 27 2025
R-4.3-mac-aarch64WARNINGFeb 27 2025

Exports:gendata_simuRR_COAPselectParams

Dependencies:irlbalatticeMASSMatrixRcppRcppArmadillo

COAP: simulation

Rendered fromCOAPsimu.Rmdusingknitr::rmarkdownon Feb 27 2025.

Last update: 2024-04-29
Started: 2023-10-14