This vignette introduces the usage of COAP for the analysis of high-dimensional count data with additional high-dimensional covariates, by comparison with other methods.
The package can be loaded with the command:
First, we generate the data simulated data.
n <- 200; p <- 200;
d= 50
rank0 <- 6;
q = 5;
datList <- gendata_simu(seed = 1, n=n, p=p, d= d, rank0 = rank0, q= q, rho=c(2, 2),
sigma2_eps = 1)
X_count <- datList$X; Z <- datList$Z
H0 <- datList$H0; B0 <- datList$B0
bbeta0 <- cbind( datList$mu0, datList$bbeta0)
Fit the COAP model using the function RR_COAP()
in the R
package COAP
. Users can use ?RR_COAP
to see
the details about this function
hq <- 5; hr <- 6
system.time({
tic <- proc.time()
reslist <- RR_COAP(X_count, Z= Z, q=hq, rank_use= hr, epsELBO = 1e-6)
toc <- proc.time()
time_coap <- toc[3] - tic[3]
})
Check the increased property of the envidence lower bound function.
library(ggplot2)
dat_iter <- data.frame(iter=1:length(reslist$ELBO_seq), ELBO=reslist$ELBO_seq)
ggplot(data=dat_iter, aes(x=iter, y=ELBO)) + geom_line() + geom_point() + theme_bw(base_size = 20)
We calculate the metrics to measure the estimatioin accuracy, where
the trace statistic is used to measure the estimation accuracy of
loading matrix and prediction accuracy of factor matrix, which is
evaluated by the function measurefun()
in the R package
GFM
, and the root of mean square error is adopted to
measure the estimation error of bbeta.
library(GFM)
metricList <- list()
metricList$COAP <- list()
metricList$COAP$Tr_H <- measurefun(reslist$H, H0)
metricList$COAP$Tr_B <- measurefun(reslist$B, B0)
norm_vec <- function(x) sqrt(sum(x^2/ length(x)))
metricList$COAP$err_bb <- norm_vec(reslist$bbeta-bbeta0)
metricList$COAP$err_bb1 <- norm_vec(reslist$bbeta[,1]-bbeta0[,1])
metricList$COAP$Time <- time_coap
We compare COAP with various prominent methods in the literature. They are (1) High-dimensional LFM (Bai and Ng 2002) implemented in the R package GFM; (2) PoissonPCA (Kenney et al. 2021) implemented in the R package PoissonPCA; (3) Zero-inflated Poisson factor model (ZIPFA, Xu et al. 2021) implemented in the R package ZIPFA; (4) Generalized factor model (Liu et al. 2023) implemented in the R package GFM; (5) PLNPCA (Chiquet et al. 2018) implemented in the R package PLNmodels; (6) Generalized Linear Latent Variable Models (GLLVM, Hui et al. 2017) implemented in the R package gllvm. (7) Poisson regression model for each xij, (j = 1, · · ·, p), implemented in stats R package; (8) Multi-response reduced-rank Poisson regression model (MMMR, Luo et al. 2018) implemented in rrpack R package.
(1). First, we implemented the linear factor model (LFM) and record the metrics that measure the estimation accuracy and computational cost.
metricList$LFM <- list()
tic <- proc.time()
fit_lfm <- Factorm(X_count, q=q)
toc <- proc.time()
time_lfm <- toc[3] - tic[3]
hbb1 <- colMeans(X_count)
metricList$LFM$Tr_H <- measurefun(fit_lfm$hH, H0)
metricList$LFM$Tr_B <- measurefun(fit_lfm$hB, B0)
metricList$LFM$err_bb1 <- norm_vec(hbb1- bbeta0[,1])
metricList$LFM$err_bb <- NA
metricList$LFM$Time <- time_lfm
(2). Then, we implemented PoissonPCA and recorded the metrics.
metricList$PoissonPCA <- list()
library(PoissonPCA)
tic <- proc.time()
fit_poispca <- Poisson_Corrected_PCA(X_count, k= hq)
toc <- proc.time()
time_ppca <- toc[3] - tic[3]
hbb1 <- colMeans(X_count)
metricList$PoissonPCA$Tr_H <- measurefun(fit_poispca$scores, H0)
metricList$PoissonPCA$Tr_B <- measurefun(fit_poispca$loadings, B0)
metricList$PoissonPCA$err_bb1 <- norm_vec(log(1+fit_poispca$center)- bbeta0[,1])
metricList$PoissonPCA$err_bb <- NA
metricList$PoissonPCA$Time <- time_ppca
## ZIPFA runs very slowly, so we do not run it here.
library(ZIPFA)
metricList$ZIPFA <- list()
system.time(
tic <- proc.time()
fit_zipfa <- ZIPFA(X_count, k=hq, display = FALSE)
toc <- proc.time()
time_zipfa <- toc[3] - tic[3]
)
idx_max_like <- which.max(fit_zipfa$Likelihood)
hbb1 <- colMeans(X_count)
metricList$ZIPFA$Tr_H <- measurefun(fit_zipfa$Ufit[[idx_max_like]], H0)
metricList$ZIPFA$Tr_B <- measurefun(fit_zipfa$Vfit[[idx_max_like]], B0)
metricList$PoissonPCA$Time <- time_zipfa
metricList$GFM <- list()
tic <- proc.time()
fit_gfm <- gfm(list(X_count), type='poisson', q= q, verbose = F)
toc <- proc.time()
time_gfm <- toc[3] - tic[3]
metricList$GFM$Tr_H <- measurefun(fit_gfm$hH, H0)
metricList$GFM$Tr_B <- measurefun(fit_gfm$hB, B0)
metricList$GFM$err_bb1 <- norm_vec(fit_gfm$hmu- bbeta0[,1])
metricList$GFM$err_bb <- NA
metricList$GFM$Time <- time_gfm
PLNPCA_run <- function(X_count, covariates, q, Offset=rep(1, nrow(X_count))){
require(PLNmodels)
if(!is.character(Offset)){
dat_plnpca <- prepare_data(X_count, covariates)
dat_plnpca$Offset <- Offset
}else{
dat_plnpca <- prepare_data(X_count, covariates, offset = Offset)
}
d <- ncol(covariates)
# offset(log(Offset))+
formu <- paste0("Abundance ~ 1 + offset(log(Offset))+",paste(paste0("V",1:d), collapse = '+'))
myPCA <- PLNPCA(as.formula(formu), data = dat_plnpca, ranks = q)
myPCA1 <- getBestModel(myPCA)
myPCA1$scores
res_plnpca <- list(PCs= myPCA1$scores, bbeta= myPCA1$model_par$B,
loadings=myPCA1$model_par$C)
return(res_plnpca)
}
tic <- proc.time()
fit_plnpca <- PLNPCA_run(X_count, covariates = Z[,-1], q= q)
toc <- proc.time()
time_plnpca <- toc[3] - tic[3]
message(time_plnpca, " seconds")
metricList$PLNPCA$Tr_H <- measurefun(fit_plnpca$PCs, H0)
metricList$PLNPCA$Tr_B <- measurefun(fit_plnpca$loadings, B0)
metricList$PLNPCA$err_bb1 <- norm_vec(fit_plnpca$bbeta[,1]- bbeta0[,1])
metricList$PLNPCA$err_bb <- norm_vec(as.vector(fit_plnpca$bbeta) - as.vector(bbeta0))
metricList$PLNPCA$Time <- time_plnpca
## GLLVM runs very slowly, so we do not run it here.
library(gllvm)
colnames(Z) <- c(paste0("V",1: ncol(Z)))
tic <- proc.time()
fit <- gllvm(y=X_count, X=Z, family=poisson(), num.lv= q, control = list(trace=T))
toc <- proc.time()
time_gllvm <- toc[3] - tic[3]
metricList$GLLVM <- list()
metricList$GLLVM$Tr_H <- measurefun(fit$lvs, H0)
metricList$GLLVM$Tr_B <- measurefun(fit$params$theta, B0)
metricList$GLLVM$err_bb1 <- norm_vec(fit$params$beta0- bbeta0[,1])
metricList$GLLVM$err_bb <- norm_vec(as.vector(cbind(fit$params$beta0,fit$params$Xcoef)) - as.vector(bbeta0))
metricList$GLLVM$Time <- time_gllvm
}
PoisReg <- function(X_count, covariates){
library(stats)
hbbeta <- apply(X_count, 2, function(x){
glm1 <- glm(x~covariates+0, family = "poisson")
coef(glm1)
} )
return(t(hbbeta))
}
tic <- proc.time()
hbbeta_poisreg <- PoisReg(X_count, Z)
toc <- proc.time()
time_poisreg <- toc[3] - tic[3]
metricList$GLM <- list()
metricList$GLM$Tr_H <- NA
metricList$GLM$Tr_B <- NA
metricList$GLM$err_bb1 <- norm_vec(hbbeta_poisreg[,1]- bbeta0[,1])
metricList$GLM$err_bb <- norm_vec(as.vector(hbbeta_poisreg) - as.vector(bbeta0))
metricList$GLM$Time <- time_poisreg
mrrr_run <- function(Y, X, rank0, q=NULL, family=list(poisson()), familygroup=rep(1,ncol(Y))){
require(rrpack)
n <- nrow(Y); p <- ncol(Y)
if(!is.null(q)){
rank0 <- rank0+q
X <- cbind(X, diag(n))
}
svdX0d1 <- svd(X)$d[1]
init1 = list(kappaC0 = svdX0d1 * 5) ## this setting follows the example that authors provided.
fit.mrrr <- mrrr(Y=Y, X=X[,-1], family = family, familygroup = familygroup,
penstr = list(penaltySVD = "rankCon", lambdaSVD = 0.1),
init = init1, maxrank = rank0)
hbbeta_mrrr <-t(fit.mrrr$coef[1:ncol(Z), ])
if(!is.null(q)){
Theta_hb <- (fit.mrrr$coef[(ncol(Z)+1): (nrow(Z)+ncol(Z)), ])
svdTheta <- svd(Theta_hb, nu=q, nv=q)
return(list(hbbeta=hbbeta_mrrr, factor=svdTheta$u, loading=svdTheta$v))
}else{
return(list(hbbeta=hbbeta_mrrr))
}
}
tic <- proc.time()
res_mrrrz <- mrrr_run(X_count, Z, rank0)
toc <- proc.time()
time_mrrrz <- toc[3] - tic[3]
metricList$MRRR_Z <- list()
metricList$MRRR_Z$Tr_H <- NA
metricList$MRRR_Z$Tr_B <-NA
metricList$MRRR_Z$err_bb1 <- norm_vec(res_mrrrz$hbbeta[,1]- bbeta0[,1])
metricList$MRRR_Z$err_bb <- norm_vec(as.vector(res_mrrrz$hbbeta) - as.vector(bbeta0))
metricList$MRRR_Z$Time <- time_mrrrz
tic <- proc.time()
res_mrrrf <- mrrr_run(X_count, Z, rank0, q=q)
toc <- proc.time()
time_mrrrf <- toc[3] - tic[3]
metricList$MRRR_F <- list()
metricList$MRRR_F$Tr_H <- measurefun(res_mrrrf$factor, H0)
metricList$MRRR_F$Tr_B <- measurefun(res_mrrrf$loading, B0)
metricList$MRRR_F$err_bb1 <- norm_vec(res_mrrrf$hbbeta[,1]- bbeta0[,1])
metricList$MRRR_F$err_bb <- norm_vec(as.vector(res_mrrrf$hbbeta) - as.vector(bbeta0))
metricList$MRRR_F$Time <- time_mrrrf
Next, we summarized the metrics for COAP and other compared methods in a dataframe object.
list2vec <- function(xlist){
nn <- length(xlist)
me <- rep(NA, nn)
idx_noNA <- which(sapply(xlist, function(x) !is.null(x)))
for(r in idx_noNA) me[r] <- xlist[[r]]
return(me)
}
dat_metric <- data.frame(Tr_H = sapply(metricList, function(x) x$Tr_H),
Tr_B = sapply(metricList, function(x) x$Tr_B),
err_bb1 =sapply(metricList, function(x) x$err_bb1),
err_bb = list2vec(lapply(metricList, function(x) x[['err_bb']])),
Method = names(metricList))
dat_metric
Plot the results for COAP and other methods, which suggests that COAP achieves better estimation accuracy for the quantiites of interest.
library(cowplot)
p1 <- ggplot(data=subset(dat_metric, !is.na(Tr_B)), aes(x= Method, y=Tr_B, fill=Method)) + geom_bar(stat="identity") + xlab(NULL) + scale_x_discrete(breaks=NULL) + theme_bw(base_size = 16)
p2 <- ggplot(data=subset(dat_metric, !is.na(Tr_H)), aes(x= Method, y=Tr_H, fill=Method)) + geom_bar(stat="identity") + xlab(NULL) + scale_x_discrete(breaks=NULL)+ theme_bw(base_size = 16)
p3 <- ggplot(data=subset(dat_metric, !is.na(err_bb1)), aes(x= Method, y=err_bb1, fill=Method)) + geom_bar(stat="identity") + xlab(NULL) + scale_x_discrete(breaks=NULL)+ theme_bw(base_size = 16)
p4 <- ggplot(data=subset(dat_metric, !is.na(err_bb)), aes(x= Method, y=err_bb, fill=Method)) + geom_bar(stat="identity") + xlab(NULL) + scale_x_discrete(breaks=NULL)+ theme_bw(base_size = 16)
plot_grid(p1,p2,p3, p4, nrow=2, ncol=2)
We applied the singular value ratio based method to select the number of factors and the rank of coefficient matrix. The results showed that the SVR method has the potential to identify the true values.
datList <- gendata_simu(seed = 1, n=n, p=p, d= d, rank0 = rank0, q= q, rho=c(3, 6),
sigma2_eps = 1)
X_count <- datList$X; Z <- datList$Z
res1 <- selectParams(X_count=datList$X, Z=datList$Z, verbose=F)
print(c(q_true=q, q_est=res1['hq']))
print(c(r_true=rank0, r_est=res1['hr']))
sessionInfo()
#> R version 4.4.1 (2024-06-14)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.1 LTS
#>
#> Matrix products: default
#> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: Etc/UTC
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] rmarkdown_2.28
#>
#> loaded via a namespace (and not attached):
#> [1] digest_0.6.37 R6_2.5.1 fastmap_1.2.0 xfun_0.48
#> [5] maketools_1.3.1 cachem_1.1.0 knitr_1.48 htmltools_0.5.8.1
#> [9] buildtools_1.0.0 lifecycle_1.0.4 cli_3.6.3 sass_0.4.9
#> [13] jquerylib_0.1.4 compiler_4.4.1 sys_3.4.3 tools_4.4.1
#> [17] evaluate_1.0.1 bslib_0.8.0 yaml_2.3.10 jsonlite_1.8.9
#> [21] rlang_1.1.4