Package: CMGFM 1.1

Wei Liu

CMGFM: Interpretable Multi-Omics Representation Learning via Covariate-Augumented Generalized Factor Model

Covariate-augumented generalized factor model is designed to account for cross-modal heterogeneity, capture nonlinear dependencies among the data, incorporate additional information, and provide excellent interpretability while maintaining high computational efficiency.

Authors:Wei Liu [aut, cre], Jiakun Jiang [aut], Dewei Xiang [aut], Xuancheng Zhou [aut]

CMGFM_1.1.tar.gz
CMGFM_1.1.zip(r-4.5)CMGFM_1.1.zip(r-4.4)CMGFM_1.1.zip(r-4.3)
CMGFM_1.1.tgz(r-4.4-x86_64)CMGFM_1.1.tgz(r-4.4-arm64)CMGFM_1.1.tgz(r-4.3-x86_64)CMGFM_1.1.tgz(r-4.3-arm64)
CMGFM_1.1.tar.gz(r-4.5-noble)CMGFM_1.1.tar.gz(r-4.4-noble)
CMGFM_1.1.tgz(r-4.4-emscripten)CMGFM_1.1.tgz(r-4.3-emscripten)
CMGFM.pdf |CMGFM.html
CMGFM/json (API)

# Install 'CMGFM' in R:
install.packages('CMGFM', repos = c('https://feiyoung.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/feiyoung/cmgfm/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

On CRAN:

4.00 score 531 downloads 3 exports 12 dependencies

Last updated 5 months agofrom:874b4c8adc. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 23 2024
R-4.5-win-x86_64NOTENov 23 2024
R-4.5-linux-x86_64NOTENov 23 2024
R-4.4-win-x86_64NOTENov 23 2024
R-4.4-mac-x86_64NOTENov 23 2024
R-4.4-mac-aarch64NOTENov 23 2024
R-4.3-win-x86_64NOTENov 23 2024
R-4.3-mac-x86_64NOTENov 23 2024
R-4.3-mac-aarch64NOTENov 23 2024

Exports:CMGFMgendata_cmgfmMSVR

Dependencies:codetoolsdoSNOWforeachGFMirlbaiteratorslatticeMASSMatrixRcppRcppArmadillosnow

CMGFM: simulation

Rendered fromsimu.Rmdusingknitr::rmarkdownon Nov 23 2024.

Last update: 2024-06-24
Started: 2024-06-23