Package: MMGFM 1.1.0

MMGFM: Multi-Study Multi-Modality Generalized Factor Model

We introduce a generalized factor model designed to jointly analyze high-dimensional multi-modality data from multiple studies by extracting study-shared and specified factors. Our factor models account for heterogeneous noises and overdispersion among modality variables with augmented covariates. We propose an efficient and speedy variational estimation procedure for estimating model parameters, along with a novel criterion for selecting the optimal number of factors. More details can be referred to Liu et al. (2024) <doi:10.48550/arXiv.2408.10542>.

Authors:Wei Liu [aut, cre], Qingzhi Zhong [aut]

MMGFM_1.1.0.tar.gz
MMGFM_1.1.0.zip(r-4.5)MMGFM_1.1.0.zip(r-4.4)MMGFM_1.1.0.zip(r-4.3)
MMGFM_1.1.0.tgz(r-4.4-x86_64)MMGFM_1.1.0.tgz(r-4.4-arm64)MMGFM_1.1.0.tgz(r-4.3-x86_64)MMGFM_1.1.0.tgz(r-4.3-arm64)
MMGFM_1.1.0.tar.gz(r-4.5-noble)MMGFM_1.1.0.tar.gz(r-4.4-noble)
MMGFM_1.1.0.tgz(r-4.4-emscripten)MMGFM_1.1.0.tgz(r-4.3-emscripten)
MMGFM.pdf |MMGFM.html
MMGFM/json (API)

# Install 'MMGFM' in R:
install.packages('MMGFM', repos = c('https://feiyoung.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/feiyoung/mmgfm/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

On CRAN:

3.00 score 6 scripts 123 downloads 3 exports 13 dependencies

Last updated 3 months agofrom:b54d1164a4. Checks:OK: 1 WARNING: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 03 2024
R-4.5-win-x86_64WARNINGNov 03 2024
R-4.5-linux-x86_64WARNINGNov 03 2024
R-4.4-win-x86_64WARNINGNov 03 2024
R-4.4-mac-x86_64WARNINGNov 03 2024
R-4.4-mac-aarch64WARNINGNov 03 2024
R-4.3-win-x86_64WARNINGNov 03 2024
R-4.3-mac-x86_64WARNINGNov 03 2024
R-4.3-mac-aarch64WARNINGNov 03 2024

Exports:gendata_mmgfmMMGFMselectFac.MMGFM

Dependencies:codetoolsdoSNOWforeachGFMirlbaiteratorslatticeMASSMatrixMultiCOAPRcppRcppArmadillosnow